
6/9/22, 11:30 PM ME405_HW0x02 - Jupyter Notebook

localhost:8888/notebooks/ME405_HW0x02.ipynb# 1/7

ME 405 - 2.5 Degree of Freedom Plotter
Kinematics
Author: Logan Williamson

Date: 5/7/2022

Description:

This file establishes the system kinematics describing operation of a 2.5 degree of freedom plotting
robot. This machine consists of an aluminum extrude frame which supports a stepper-motor driven
turntable drawing surface. Additionally, the upright supports of this frame support a ball screw
linear actuator, also driven by a stepper motor. These two motion devices constitute the two
degrees of freedom of this plotting machine's motion. On the ball screw, a 3D printed carriage
conveys a ballpoint pen and a linear actuator. This linear actuator will extend or retract the pen,
comprising the degree of freedom.

The motion of this device is described using a simplified schematic representation as seen in
Appendix A. The two motion-producing mechanisms are resolved into a schematic wherein the
motion of the mechanism can be represented by two variables, and . The variable is the
linear/radial motion of the carriage subassembly on the ballscrew. This factor can be related to the
rotational motion of the driving motor using the screw pitch of 5mm. This yields a driving system
parameter, , related to the radial coordiate by the relationship .

From this setup, the system kinematics are analyzed by establishing uncoupled x- and y-
coordinate equations representing the polar-to-Cartesian coordinate transform of the simplified
schematic actuator "arm" vector. This yields the matrix equation . Taking the Jacobian of
the vectorized form of yields a conversion matrix between our motor actuation angles, and
and the corresponding Cartesian coordinates of the plotting pen tip, and .

Using this Jacobian, we can set up a Newton-Raphson iterative solver of the form

Upon passing the desired input vector (containing the desired and Cartesian coordiantes)
into the solver, along with an initial guess value for theta, the minimization fuction , the
Jacobian of the system (or a function which computes it), and the acceptable error for a given
solution, the solver will compute the associated vector containing and motor actuation
angles required to achieve that position.

To demonstrate how this will be used in the plotting robot's operation, the following script calls
upon the g(x,theta) function, the dg_dtheta(theta) function, and the NewtonRaphson(fcn, jacobian,
guess, thresh) to solve for the theta values associated with a series of points representing a
parametrically generated ellipse. It then iterates through the parametric data representing these
points and generates an actuator arm vector which 'traces' the elliptical path out frame-by-frame.
Finally, these plots are saved as images, compiled, and used to generate a .gif animation as seen
in Figure 1 below.

1

2

𝑟 𝜃2 𝑟

𝜃1 𝑟 = 5

2∗𝜋
𝜃1

𝐱 = 𝑓(𝜽)

𝑓 𝜃1 𝜃2
𝑥 𝑦

= − 𝑔()𝜽𝒏+1 𝜽𝒏 ()
𝛿𝑔()𝜽𝒏

𝛿()𝜽𝒏

−1

𝜽𝒏

𝐱 𝑥 𝑦

𝑔(𝐱)

𝜽 𝜃1 𝜃2

6/9/22, 11:30 PM ME405_HW0x02 - Jupyter Notebook

localhost:8888/notebooks/ME405_HW0x02.ipynb# 2/7

In [5]: ## Main Script - Newton Raphson and Plotter Motion gif Generation
​
import numpy as np
import time, math, imageio
import matplotlib.pyplot as plt
​
#Number of points in ellipse
n = 64
#Half of major axis length
a = 100
#Half of minor axis length
b = 50
#Lead screw pitch, [mm/revolution]
N = 5/(2*math.pi)
theta_guess = np.array([[125],[0.01]])
i=0
theta_store = []
#Generate n+1 length, equally-spaced time vector for
#tracing a full rotation in theta_2 direction
t = np.linspace(0,2*np.pi,n+1)
#Generate points in the ellipse
x = np.array([a*np.cos(t)])
y = np.array([b*np.sin(t)])
#Store ellipse position values in a 2 x n+1 array
x_desarray = np.vstack((x,y))
​
#Iterate through the points of the ellipse, solving for the associated
#theta values required to actuate the mechanism to each point. Convert
#results back to Cartesian coordinates for plot readability and ease of
#plotting. Plot the results parametrically.
filenames = []
for i in range(0,n+1):
 x_des = np.array([[x_desarray[0][i]],[x_desarray[1][i]]])
 theta = NewtonRaphson(lambda theta:g(x_des,theta),dg_dtheta,theta_guess,1e-6)
 theta_guess = theta
 theta_store.append([theta[0][0],theta[1][0]])
#print(theta_store)

##Polar Plotting Attempts
f = plt.figure()
ax = f.add_subplot(111, polar='True')
ax.quiver([0, theta_store[i][1]], 0, N*theta_store[i][0])

fig, ax = plt.subplots(subplot_kw={'projection': 'polar'})
ax.plot(theta_store[i][1], N*theta_store[i][0],marker="D")
ax.set_rmax(110)
ax.grid(True)
ax.set_title("A line plot on a polar axis", va='bottom')
plt.show()
​
 plt.axis([-110,110,-110,110])
 plt.grid()
 plt.plot(x[0][:i+1],y[0][:i+1])
 #Convert theta values produced by Newton Raphson back to Cartesian for plotti
 x1 = [0, N*theta_store[i][0]*math.cos(theta_store[i][1])]
 y1 = [0, N*theta_store[i][0]*math.sin(theta_store[i][1])]

6/9/22, 11:30 PM ME405_HW0x02 - Jupyter Notebook

localhost:8888/notebooks/ME405_HW0x02.ipynb# 3/7

Figure 1: Animation of plotter motion, as seen from the drawing surface reference frame

The following function g(x,theta) takes an input np.array vector, x, containing two elements
representing Cartesian x- and y-coordinates and an input np.array vector, theta, containing two
elements (and , corresponding to theta[0][0] and theta[1][0], respectively). It then computes
the entries of the function vector which is the polar to Cartesian coordinate transform. Finally,
it carries out element-wise subtraction of f from x to generate the vector g.

𝜃1 𝜃2
𝑓(𝜃)

In [1]:

The function dg_dtheta(theta) takes an input numpy.array column vector object, theta, containing
 and , corresponding to theta[0][0] and theta[1][0], respectively). It uses these polar

coordinates to compute the partial derivative of the function g(x,theta) with respect to theta. The
result is the Jacobian of the polar to Cartesian transform, negated. This will be used in the Newton-
Raphson iterative solver for incremental calculation of polar to Cartesian coordinate transforms.

𝜃1 𝜃2

 plt.plot(x1,y1)

 #Create a file name and append it to a list
 filename = f'{i}.png'
 filenames.append(filename)

 #Save .png file of each plotting frame
 plt.savefig(filename)
 plt.close()

#Build gif
with imageio.get_writer('mygif.gif', mode='I') as writer:
 for filename in filenames:
 image = imageio.imread(filename)
 writer.append_data(image)

def g(x, theta):
 f_arr = np.array([[N*theta[0][0]*math.cos(theta[1][0])],
 [N*theta[0][0]*math.sin(theta[1][0])]])
 g = np.subtract(x,f_arr)
 return g

6/9/22, 11:30 PM ME405_HW0x02 - Jupyter Notebook

localhost:8888/notebooks/ME405_HW0x02.ipynb# 4/7

In [2]:

The function NewtonRaphson(fcn,jacobian,guess,thresh) takes in four arguments. These are:

fcn: an anonymous function handle containing the desired output field of the function, and the
input field to be varied by the solver
jacobian: the Jacobian of the system being analyzed (which can be found by passing in the
function dg_dtheta(theta)
guess: an initial guess value used as a starting point for the first solver iteration
thresh: an error threshold value used to determine if the output error of the function has
reached an adequately close approximation of the theta value required to yield the static
desired output of the anonymous function.

In [3]:

Appendix A: Hand Calculations

def dg_dtheta(theta):
 dg_dtheta = np.array([[-N*math.cos(theta[1][0]),N*theta[0][0]*math.sin(theta[
 [-N*math.sin(theta[1][0]),-N*theta[0][0]*math.cos(theta
 return dg_dtheta

def NewtonRaphson(fcn,jacobian,guess,thresh):
 step = 0
 error = math.inf
 theta = guess
 while error > thresh:
 g = fcn(theta)
 error = np.linalg.norm(g)
 theta = np.subtract(theta,np.matmul(np.linalg.inv(jacobian(theta)),g))
 step+=1
 return theta

6/9/22, 11:30 PM ME405_HW0x02 - Jupyter Notebook

localhost:8888/notebooks/ME405_HW0x02.ipynb# 5/7

6/9/22, 11:30 PM ME405_HW0x02 - Jupyter Notebook

localhost:8888/notebooks/ME405_HW0x02.ipynb# 6/7

6/9/22, 11:30 PM ME405_HW0x02 - Jupyter Notebook

localhost:8888/notebooks/ME405_HW0x02.ipynb# 7/7

